RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 1997 Volume 61, Issue 4, Pages 119–136 (Mi im138)

This article is cited in 1 paper

Certain classes of power series that cannot be analytically continued across their circle of convergence

A. I. Pavlov

Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: We define, in number-theoretical terms, the class $\{M\}$ of sets of natural numbers having the properties:
1) the asymptotic density $\gamma$ of a set $M$ satisfies the inequality $0<\gamma<1$;
2) if $G(z)$ is an entire function with non-negative Taylor coefficients and not growing too fast at infinity, then the power series $\sum_{m\in M}G(m)z^m$, having radius of convergence 1, cannot be analytically continued into the domain $|z|>1$ across any arc on the circle $|z|=1$.

MSC: 30B40

Received: 02.12.1995

DOI: 10.4213/im138


 English version:
Izvestiya: Mathematics, 1997, 61:4, 795–812

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026