RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1985 Volume 49, Issue 2, Pages 243–282 (Mi im1354)

This article is cited in 11 papers

Two criteria for weak generalized localization for multiple trigonometric Fourier series of functions in $L_p$, $p\geqslant1$

I. L. Bloshanskii


Abstract: The concept of weak generalized localization almost everywhere is introduced. For the multiple Fourier series of a function $f$, weak generalized localization almost everywhere holds on the set $E$ ($E$ is an arbitrary set of positive measure $E\subset T^N=[-\pi,\pi]^N$) if the condition $f(x)\in L_p(T^N)$, $p\geqslant1$, $f=0$ on $E$ implies that the indicated series converges almost everywhere on some subset $E_1\subset E$ of positive measure. For a large class of sets $\{E\}$, $E\subset T^N$, a number of propositions are proved showing that weak localization of rectangular sums holds on the set $E$ in the classes $L_p$, $p\geqslant1$, if and only if the set $E$ has certain specific properties. In the course of the proof the precise geometry and structure of the subset $E_1$ of $E$ on which the multiple Fourier series converges almost everywhere to zero are determined.
Bibliography: 13 titles.

UDC: 517.5

MSC: 42B05

Received: 25.04.1983


 English version:
Mathematics of the USSR-Izvestiya, 1986, 26:2, 223–262

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026