RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1985 Volume 49, Issue 1, Pages 160–193 (Mi im1350)

This article is cited in 4 papers

Scattering of a plane wave by a cylindrical surface with a long perturbation

M. V. Fedoryuk


Abstract: The Helmholtz equation in the exterior of a surface $S$: $r=dF(z/l)$ in $\mathbf R^3$, where $F(z)\equiv1$ for $|z|\geqslant1/2$, and the problem of the scattering of a plane wave for Dirichlet, Neumann and impedance boundary conditions on $S$ are considered. The asymptotics of the scattered field and the scattering amplitudes are found under the conditions $kl\to\infty$, $kd\thicksim1$, $\cos{\theta_0}\leqslant c<1$, where $k$, $\theta_0$, $\varphi_0$ are the spherical coordinates of the wave vector of the plane wave.
Bibliography: 21 titles.

UDC: 517.9

MSC: Primary 35P25; Secondary 35J05, 35B20

Received: 25.04.1983


 English version:
Mathematics of the USSR-Izvestiya, 1986, 26:1, 153–184

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026