RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1985 Volume 49, Issue 1, Pages 55–80 (Mi im1347)

This article is cited in 3 papers

Singular integral equations and the Riemann boundary value problem with infinite index in the space $L_p(\Gamma,\omega)$

S. M. Grudskii


Abstract: The Riemann boundary value problem
$$ \varphi^+(t)-a(t)\varphi^-(t)= f(t),\qquad t\in\Gamma, $$
is considered on a simple closed piecewise smooth contour $\Gamma$ in the space $L_p(\Gamma,\omega)$, along with the corresponding singular integral operator
$$ A_{a,\Gamma}=P_\Gamma^+-a(t)P_\Gamma^- $$
with a bounded coefficient $a(t)$ bounded away from zero and having finitely many discontinuities of the second kind that are vorticity points of power type. A theory of one-sided invertibility of $A_{a,\Gamma}$ is constructed, the spaces $\operatorname{Ker}A_{a,\Gamma}$ and $\operatorname{Im}A_{a,\Gamma}$ are described, and a construction is given for the inverse operators.
Bibliography: 31 titles.

UDC: 517.948

MSC: Primary 30E25, 45E05; Secondary 30D55, 35Q15, 45E10

Received: 20.08.1982


 English version:
Mathematics of the USSR-Izvestiya, 1986, 26:1, 53–76

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026