RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1987 Volume 51, Issue 6, Pages 1228–1264 (Mi im1339)

This article is cited in 3 papers

Simple Lie algebras in varieties generated by Lie algebras of cartan type

Yu. P. Razmyslov


Abstract: The author proves that if $K$ is the algebra of regular functions of any smooth affine indecomposable algebraic variety ($\operatorname{char}K=0$) then it can be recovered from its Lie algebra of regular vector fields using a certain multilinear polynomial mapping. It is established that if, for some natural number $n$, a finitely generated Lie algebra $\mathscr G$ over an algebraically closed field $K$ ($\operatorname{char}K=0$) satisfies all identities of the Lie algebra $\widetilde W_n(K)$ of all derivations of the power series algebra in $n$ commuting variables, then $\mathscr G$ contains a proper subalgebra of finite codimension; moreover, for any maximal ideal $J$ of $\mathscr G$, either $\dim_K\mathscr G/J\leqslant n^2+2n$ or $\mathscr G/J$ can be embedded in $\widetilde W_n(K)$.
Bibliography: 15 titles.

UDC: 519.4

MSC: Primary 17B20; Secondary 17B65

Received: 10.04.1986


 English version:
Mathematics of the USSR-Izvestiya, 1988, 31:3, 541–573

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026