RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1987 Volume 51, Issue 6, Pages 1191–1213 (Mi im1337)

This article is cited in 3 papers

An ergodic decomposition for homogeneous flows

A. N. Starkov


Abstract: An ergodic decomposition of an arbitrary $G$-induced flow on a space $G/D$ of finite volume is constructed under the condition that a semisimple Levi subgroup $S$ of the connected Lie group $G$ does not have compact factors. A method is presented that allows the study of a homogeneous flow of this form to be reduced to the study of a family of homogeneous ergodic flows.
Bibliography: 17 titles.

UDC: 519.46

MSC: Primary 22D40, 43A85; Secondary 58F25, 58F11, 22E25, 28D99

Received: 25.12.1985


 English version:
Mathematics of the USSR-Izvestiya, 1988, 31:3, 503–525

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026