RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1987 Volume 51, Issue 4, Pages 785–811 (Mi im1319)

This article is cited in 6 papers

On the spectral theory of multiparameter difference equations of second order

G. Sh. Guseinov


Abstract: Let
\begin{gather*} a_{n_r-1,r}y_{n_r-1,r}+b_{n_r,r}y_{n_r,r}+a_{n_r,r}y_{n_r+1,r}= \biggl(\sum_{s=1}^k\lambda_s c_{n_r,r,s}\biggr)y_{n_r,r},\\ r=1,\dots,k, \end{gather*}
be a system of $k$ second-order difference equations (with real coefficients) containing $k$ spectral parameters $\lambda_1,\dots,\lambda_k$. The existence of spectral measures is established in the cases when $n_1,\dots,n_k$ run through the integer points of the semiaxis and of the whole axis, the properties of the spectral measures are studied, and with their help formulas are written out for expansions in eigenvectors of this system. The case of periodic coefficients is investigated in greater detail.
Bibliography: 14 titles.

UDC: 517.984.46

MSC: Primary 39A10, 39A12; Secondary 39A11

Received: 22.04.1985


 English version:
Mathematics of the USSR-Izvestiya, 1988, 31:1, 95–120

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026