RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1987 Volume 51, Issue 3, Pages 568–583 (Mi im1309)

This article is cited in 4 papers

On cuspidal divisors on the modular varieties of elliptic modules

M. M. Kapranov


Abstract: Elliptic modules of arbitrary rank are considered over the polynomial ring $F_q[t]$. A compactification of the modular varieties that parametrizes such modules is constructed. A generalization of the Manin-Drinfel'd theorem on modular curves is proved: the difference of two adherent components of codimension 1 has finite order in the Picard group.
Bibliography: 7 titles.

UDC: 519.49

MSC: Primary 11G18, 11G05, 11G07, 11F85; Secondary 11F67, 14K15, 14G99, 14G20

Received: 04.03.1985


 English version:
Mathematics of the USSR-Izvestiya, 1988, 30:3, 533–547

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026