RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1987 Volume 51, Issue 2, Pages 242–269 (Mi im1292)

This article is cited in 4 papers

On the first boundary value problem for nonlinear degenerate elliptic equations

N. V. Krylov


Abstract: This article is devoted to a proof of a general theorem on the existence of a solution of the first boundary value problem for a degenerate Bellman equation. In contrast to other papers the nonlinearity of the equation is used here and leads, for example, to a proof of solvability of the simplest Monge–Ampére equation $\det (u_{xx})=f^d(x)$ for $f \in C^2$, $f\geqslant0$ in a strictly convex region of class $C^3$ with zero data on the boundary.
Bibliography: 18 titles.

UDC: 517.9

MSC: Primary 35A05, 35J25, 35J60, 35J70; Secondary 35J65

Received: 11.04.1985


 English version:
Mathematics of the USSR-Izvestiya, 1988, 30:2, 217–244

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026