RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1987 Volume 51, Issue 1, Pages 79–95 (Mi im1263)

On an algebra connected with Toeplitz operators in radial tube domains

N. L. Vasilevskii


Abstract: This article is a study of an algebra acting in $L_2^m(\mathbf R^n)$ and obtained by extending the classical algebra of multidimensional singular integral operators with the help of the orthogonal projection $P=F^{-1}\chi(\xi)F$, where $\chi(\xi)$ is the characteristic function of some cone in $\mathbf R^n$, and $F$ and $F^{-1}$ are the direct and inverse Fourier transformations, respectively.
Bibliography: 29 titles.

UDC: 517.986.3

MSC: Primary 32A07, 47B35, 47D40; Secondary 45E10, 47G05, 47A53, 55P15, 47D25

Received: 26.12.1984


 English version:
Mathematics of the USSR-Izvestiya, 1988, 30:1, 71–88

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026