RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1989 Volume 53, Issue 3, Pages 657–663 (Mi im1259)

This article is cited in 2 papers

On blocks of defect $0$ in finite groups

S. P. Strunkov


Abstract: Let $n\geqslant1$ be a given natural number. It is proved that a finite group $G$ has a $p$-block of defect $0$ if and only if for some $g\in G$ the number of solutions of the equation $g=[x_1,x_2]\dots[x_{2n-1},x_{2n}]$ is not divisible by $p$. A number of criteria for the existence of real characters of defect $0$ in $G$ is obtained.
Bibliography: 6 titles.

UDC: 519.4

MSC: 20C20

Received: 25.05.1986


 English version:
Mathematics of the USSR-Izvestiya, 1990, 34:3, 677–683

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026