RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1989 Volume 53, Issue 2, Pages 439–446 (Mi im1250)

This article is cited in 6 papers

Smooth measures and the law of the iterated logarithm

N. G. Makarov


Abstract: A measure $\mu$ defined on the unit circle $\partial\mathbf D$ is called smooth if $|\mu(I')-\mu(I'')|\leqslant C|I'|$ for any two adjacent intervals, $I',I''\subset\partial\mathbf D$ of equal length. It is shown that smooth measures are absolutely continuous with respect to Hausdorff measure with weight function $t(\log\frac1t\log\log\log\frac1t)^{1/2}$, and that this result is sharp. The results are applied to the well-known problem of the angular derivative of a univalent function.
Bibliography: 14 titles.

UDC: 517.5

MSC: Primary 26A30; Secondary 60F15, 30C35

Received: 10.06.1988


 English version:
Mathematics of the USSR-Izvestiya, 1990, 34:2, 455–463

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026