RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1989 Volume 53, Issue 1, Pages 121–146 (Mi im1233)

This article is cited in 57 papers

Homology of the full linear group over a local ring, and Milnor's $K$-theory

Yu. P. Nesterenko, A. A. Suslin


Abstract: For rings with a large number of units the authors prove a strengthened theorem on homological stabilization: the homomorphism $H_k(\operatorname{GL}_n(A))\to H_k(\operatorname{GL}(A))$ is surjective for $n\geqslant k+\operatorname{sr}A-1$ and bijective for $n\geqslant k+\operatorname{sr}A$. If $A$ is a local ring with an infinite residue field, then this result admits further refinement: the homomorphism $H_n(\operatorname{GL}_n(A))\to H_n(\operatorname{GL}(A))$ is bijective and the factor group $H_n(\operatorname{GL}(A))/H_n(\operatorname{GL}_{n-1}(A))$ is canonically isomorphic to Milnor's $n$ th $K$-group of the ring $A$. The results are applied to compute the Chow groups of algebraic varieties.
Bibliography: 16 titles.

UDC: 519.4

MSC: 19D45

Received: 02.04.1987


 English version:
Mathematics of the USSR-Izvestiya, 1990, 34:1, 121–145

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026