RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1988 Volume 52, Issue 6, Pages 1272–1287 (Mi im1230)

This article is cited in 23 papers

On the classical solution of nonlinear elliptic equations of second order

M. V. Safonov


Abstract: The Dirichlet problem $E(u_{x_ix_j},u_{x_i},u,x)=0$ in $\Omega\subset R^d$, $u=\varphi$ on $\partial\Omega$, is considered for nonlinear elliptic equations, including Bellman equations with “coefficients” in the Hölder space $C^{\alpha}(\overline\Omega)$. It is proved that if $\alpha>0$ is sufficiently small, then this problem is solvable in $C^{2+\alpha}_{\mathrm{loc}}(\Omega)\cap C(\overline\Omega)$. If in addition $\partial\Omega\in C^{2+\alpha}$ and $\varphi\in C^{2+\alpha}(\overline\Omega)$, then the solution belongs to $C^{2+\alpha}(\overline\Omega)$.
Bibliography: 18 titles.

UDC: 517.957

MSC: 35J65

Received: 21.01.1987


 English version:
Mathematics of the USSR-Izvestiya, 1989, 33:3, 597–612

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026