RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1988 Volume 52, Issue 6, Pages 1154–1180 (Mi im1225)

This article is cited in 17 papers

On the Mordell–Weil and Shafarevich–Tate groups for Weil elliptic curves

V. A. Kolyvagin


Abstract: Let $E$ be a Weil elliptic curve over the field $\mathbf Q$ of rational numbers, $L(E,\mathbf Q,s)$ the $L$-function over $\mathbf Q$, $\varepsilon=(-1)^{g+1}$, where $g$ is the order of the zero of $L(E,\mathbf Q,s)$ at $s=1$. Let $K$ be the imaginary quadratic extension of $\mathbf Q$ with discriminant $D\equiv\textrm{square}\pmod{4N}$, $y\in E(K)$ the Heegner point, $A=E$ or the nontrivial form of $E$ over $K$ according as $\varepsilon=-1$ or $1$. It is proved that if $y$ has infinite order (which is so if $(D,2N)=1$, $L'(E,K,1)\ne0)$, then the groups $A(\mathbf Q)$ and $Ø(A)$ are annihilated by a positive integer $C$ (in particular the groups are finite) determined by $y$. When $\varepsilon=1$ it is proved that $C^2$ coincides with the conjectured finite order of $Ø(A)$ for some $A$ with $L(A,\mathbf Q,1)\ne0$. It is also proved that $Ø$ is trivial for 23 elliptic curves.
Bibliography: 21 titles.

UDC: 519.4

MSC: Primary 11G40, 11D25, 11F67; Secondary 11G05, 14K07, 14G10, 11F33

Received: 04.02.1988


 English version:
Mathematics of the USSR-Izvestiya, 1989, 33:3, 473–499

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026