RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1988 Volume 52, Issue 3, Pages 660–665 (Mi im1199)

This article is cited in 21 papers

On deformation of sheaves

I. V. Artamkin


Abstract: Let $X$ be an algebraic variety over an algebraically closed field $k$, $\mathscr F$ a sheaf on $X$, $A$ and $\widetilde A$ commutative Artinian $k$-algebras, $A=\widetilde A/I$, where $I$ is a one-dimensional ideal, $\mathscr E$ a deformation of $\mathscr F$ with base $\operatorname{Spec}A$, and $\operatorname{Ob}(\mathscr E,A,\widetilde A)\in\operatorname{Ext}^2(\mathscr F,\mathscr F)$ the obstruction to the extension of the deformation to $\operatorname{Spec}\widetilde A$. The author constructs natural trace maps $\operatorname{tr}^i\colon\operatorname{Ext}^i(\mathscr F,\mathscr F)\to H^i(\mathscr O_X)$ and proves that if $\operatorname{Pic}X$ is nonsingular then $\operatorname{tr}^2(\operatorname{Ob}(\mathscr E,A,\widetilde A))=0$. As a consequence, a universal deformation of a simple sheaf $\mathscr F$ on $X$ with nonsingular $\operatorname{Pic}X$ exists if the map $\operatorname{tr}^2$ is injective or, in the case $\operatorname{rk}\mathscr F\ne0$, and $\operatorname{char}k\nmid\operatorname{rk}\mathscr F$, $\operatorname{Ext}^2(\mathscr F,\mathscr F)=H^2(\mathscr O_X)$.
Bibliography: 3 titles.

UDC: 512.7

MSC: 14D15, 14F05

Received: 23.10.1986


 English version:
Mathematics of the USSR-Izvestiya, 1989, 32:3, 663–668

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026