RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1989 Volume 53, Issue 1, Pages 97–120 (Mi im1163)

This article is cited in 34 papers

Subgroups and homology of free products of profinite groups

O. V. Mel'nikov


Abstract: The author defines a new construction of free product $G=\mathop{\text{\LARGE{$*$}}}^{\mathfrak K}_TG_t$ in the variety $\mathfrak K$ of profinite groups of the family $\{G_t\mid t\in T\}$ of groups in $\mathfrak K$, continuously indexed by points of the profinite space $T$. In the case where $\mathfrak K$ is closed relative to extensions with Abelian kernels, a number of assertions about the homology groups of $G$ are obtained. Using homological methods, a theorem of Kurosh type on decomposition of an arbitrary pro-$p$-subgroup in $G$ into a free pro-$p$-product is proved, under a certain separability condition on $G$.
Bibliography: 19 titles.

UDC: 512.546.37

MSC: Primary 20E06, 20E18, 20E07; Secondary 20J05

Received: 06.05.1987


 English version:
Mathematics of the USSR-Izvestiya, 1990, 34:1, 97–119

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026