RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1989 Volume 53, Issue 1, Pages 45–65 (Mi im1161)

This article is cited in 5 papers

Analytic perturbation theory for a periodic potential

Yu. E. Karpeshina


Abstract: The operator $\mathbf H_\alpha=(-\Delta)^l+\alpha V$ is considered in $L_2(\mathbf R^n)$; here $4l>n+1$, $n\geqslant2$, $V$ is a periodic potential, and $\alpha$ is a perturbation parameter, $-1\leqslant\alpha\leqslant1$. An analytic perturbation theory with respect to $\alpha$ is constructed for Block eigenfunctions and the corresponding eigenvalues of $\mathbf H_\alpha$. It is proved that, for large energies, when the quasimomentum belongs to a sufficiently rich set they admit expansion in a Taylor series in the disk $|\alpha|\leqslant1$, and these series are asymptotic in the energy and infinitely differentiable with respect to the quasimomentum.
Bibliography: 14 titles.

UDC: 517.947

MSC: 35J10, 35B20, 35P99

Received: 22.12.1986


 English version:
Mathematics of the USSR-Izvestiya, 1990, 34:1, 43–64

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026