RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1989 Volume 53, Issue 6, Pages 1236–1268 (Mi im1155)

This article is cited in 5 papers

Spectral analysis of biorthogonal expansions of functions, and exponential series

G. M. Gubreev


Abstract: The author studies the spectral properties of the operator $A=i\frac d{dt}$ in the space $L_2(0,1)$, whose domain of definition is the kernel of some functional that is bounded in $W_2^1(0,1)$ but not bounded in $L_2(0,1)$. Necessary and sufficient conditions are given under which the operators $\pm iA$ generate $C_0$-semigroups, and criteria for the similarity of $A$ with a dissipative operator are proved. The results are used to study the basis properties of families of exponentials and to solve S. G. Krein's problem on the description of generators of semigroups in terms of their dissipative extensions. The solvability of integral equations of Delsarte type for mean periodic extensions of functions is also proved.
Bibliography: 32 titles.

UDC: 517.5

MSC: Primary 47E05, 47D05, 34B25; Secondary 30B60, 30D15, 42C30, 46E30

Received: 08.12.1986


 English version:
Mathematics of the USSR-Izvestiya, 1990, 35:3, 573–605

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026