RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2008 Volume 72, Issue 4, Pages 173–196 (Mi im1141)

This article is cited in 4 papers

Remarks on uniform combined estimates of oscillatory integrals with simple singularities

D. A. Popov

A. N. Belozersky Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University

Abstract: We consider the problem of constructing asymptotically exact (for $\Omega\gg 1$) uniform (with respect to parameters $t=(t_1,t_2,\dots,t_m)$) estimates for oscillatory integrals containing a large parameter $\Omega$. We suggest a possible multidimensional analogue of Vinogradov's well-known estimate for one-dimensional integrals. Based on this suggestion, we estimate the integrals with singularities of type $A_k$, $D_4^{\pm}$ (in Arnold's classification) and use the special case of $D_5^\pm$ to discuss the possibility of generalizing our results.

UDC: 517.3

MSC: 42B20, 58C25, 58J37

Received: 12.07.2006
Revised: 20.09.2007

DOI: 10.4213/im1141


 English version:
Izvestiya: Mathematics, 2008, 72:4, 793–816

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026