RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2008 Volume 72, Issue 1, Pages 39–50 (Mi im1139)

This article is cited in 8 papers

Waring's problem with the Ramanujan $\tau$-function

M. Z. Garaeva, V. C. Garciaa, S. V. Konyaginb

a National Autonomous University of Mexico, Institute of Mathematics
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: We prove that for every integer $N$ the Diophantine equation $\sum_{i=1}^{74000}\tau(n_i)=N$, where $\tau(n)$ is the Ramanujan $\tau$-function, has a solution in positive integers $n_1, n_2,\dots, n_{74000}$ satisfying the condition $\max_{1\le i\le 74000}n_i\,{\ll}|N|^{2/11}+1$. We also consider similar questions in residue fields modulo a large prime $p$.

UDC: 511.34

MSC: 11B83, 11B50, 11P32

Received: 12.07.2006

DOI: 10.4213/im1139


 English version:
Izvestiya: Mathematics, 2008, 72:1, 35–46

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026