RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2008 Volume 72, Issue 3, Pages 89–102 (Mi im1130)

This article is cited in 3 papers

Explicit correspondences of a K3 surface with itself

C. G. Madonnaa, V. V. Nikulinbc

a Spanish National Research Council (Consejo Superior de Investigaciones Científicas)
b Steklov Mathematical Institute, Russian Academy of Sciences
c University of Liverpool

Abstract: Let $X$ be a K3-surface with a polarization $H$ of degree $H^2=2rs$, $r,s\geqslant1$. We consider the moduli space $Y$ of sheaves over $X$ with a primitive isotropic Mukai vector $(r,H,s)$. This space is again a K3-surface. In earlier papers, we gave necessary and sufficient conditions (in terms of the Picard lattice $N(X)$) for $Y$ and $X$ to be isomorphic. Here we show that these conditions imply the existence of an isomorphism between $Y$ and $X$ which is a composite of certain universal geometric isomorphisms between moduli of sheaves over $X$ and Tyurin's geometric isomorphism between moduli of sheaves over $X$ and $X$ itself. It follows that a general K3-surface $X$ with $\rho(X)=\operatorname{rk}N(X)\leqslant2$ is isomorphic to $Y$ if and only if there is an isomorphism $Y\cong X$ which is a composite of universal isomorphisms and Tyurin's isomorphism.

UDC: 512.774+512.723

MSC: 14J28, 14J60

Received: 10.07.2006

DOI: 10.4213/im1130


 English version:
Izvestiya: Mathematics, 2008, 72:3, 497–508

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026