RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. Akad. Nauk SSSR Ser. Mat., 1990 Volume 54, Issue 4, Pages 726–753 (Mi im1071)

This article is cited in 31 papers

Identities of finitely generated algebras over an infinite field

A. R. Kemer


Abstract: It is proved that for each finitely generated associative PI-algebra $U$ over an infinite field $F$, there is a finite-dimensional $F$-algebra $C$ such that the ideals of identities of the algebras $U$ and $C$ coincide. This yields a positive solution to the local problem of Specht for algebras over an infinite field: A finitely generated free associative algebra satisfies the maximum condition for $T$-ideals.

UDC: 512.552.4

MSC: Primary 16A06, 16A38; Secondary 16A46

Received: 13.02.1989


 English version:
Mathematics of the USSR-Izvestiya, 1991, 37:1, 69–96

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026