RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 1997 Volume 61, Issue 1, Pages 113–140 (Mi im107)

This article is cited in 17 papers

Homogenization of non-stationary Stokes equations with viscosity in a perforated domain

G. V. Sandrakov

M. V. Lomonosov Moscow State University

Abstract: Theorems are proved about the asymptotic behaviour of solutions of an initial boundary-value problem for non-stationary Stokes equations in a periodic perforated domain with a small period $\varepsilon$. The viscosity coefficient $\nu$ of the equations is assumed to be a positive parameter satisfying one of the following three conditions: $\nu/\varepsilon^2 \to \infty,1,0$ as $\varepsilon\to 0$. We also consider the case of degenerate Stokes equations with zero viscosity coefficient and the case of Navier–Stokes equations when the viscosity coefficient is not too small.

MSC: Primary 35B27; Secondary 76D05

Received: 27.04.1995

DOI: 10.4213/im107


 English version:
Izvestiya: Mathematics, 1997, 61:1, 113–141

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026