Abstract:
A method is proposed for the fast selection of the blurriness coefficient of the kernel functions of the regression estimation of the probability density of a one-dimensional random variable. For a fast selection, the results of studying the asymptotic properties of the regression estimate of the probability density are used. A method for estimating the components of the optimal blurriness coefficient is proposed. The method of computational experiment is used to analyze the effectiveness of the proposed approach for a fast selection of the blurriness coefficient of the regression estimate of the probability density for a family of lognormal distribution laws for different volumes of initial data, and promising procedures for sampling the range of values of a random variable.
Keywords:regression estimation of probability density, large volume samples, selection of blurriness coefficients, sampling of the range of values of random variables, lognormal distribution law.