On the spectrum of a periodic magnetic Dirac operator
L. I. Danilov Physical Technical Institute, Ural Branch of the Russian Academy
of Sciences, ul. Kirova, 132, Izhevsk, 426000, Russia
Abstract:
We consider the periodic three-dimensional Dirac operator $\widehat {\mathcal D} +\widehat W=\sum \widehat \alpha _j(-i\frac {\partial }{\partial x_j}-A_j)+\widehat V_0+ \widehat V_1$. The vector potential
$A\colon {\mathbb R}^3\to {\mathbb R}^3$ and the functions
$\widehat V_s$,
$s=0,1$, with values in the space of Hermitian
$(4\times 4)$-matrices are periodic with a common period lattice
$\Lambda \subset {\mathbb R}^3$. The functions
$\widehat V_s$ are supposed to satisfy the commutation relations $\widehat V_s\widehat \alpha _j=(-1)^s\widehat \alpha _j\widehat V_s$,
$j=1,2,3$,
$s=0,1$. Let
$K$ be the fundamental domain of the lattice
$\Lambda $. We prove absolute continuity of the spectrum of the operator
$\widehat {\mathcal D}+\widehat W$ provided that $A\in H^q_{\mathrm {loc}} ({\mathbb R}^3;{\mathbb R}^3)$,
$q>1$, or
$\sum \| A_N\| <+\infty $ where
$A_N$ are the Fourier coefficients of the magnetic potential
$A$, and the function
$\widehat V=\widehat V_0+ \widehat V_1$ belongs to the space
$L^3_w(K)$ and satisfies the estimate ${\mathrm {mes}}\, \{ x\in K:\| \widehat V(x)\| >t\} \leqslant Ct^{-3}$ for all sufficiently large numbers
$t>0$. The constant
$C>0$ depends on the
$A$ (if
$A\equiv 0$ then
$C$ is a universal constant), and
$\mathrm {mes}$ is the Lebesgue measure. We can also add a function of the same form with several Coulomb singularities
$|x-x_m|^{-1}\widehat w_m$ in neighborhoods of points
$x_m\in K$,
$m=1,\ldots ,m_0$, to the function
$\widehat V=\widehat V_0+\widehat V_1$ provided that this function is continuous for
$x\notin x_m+\Lambda $,
$m=1,\ldots ,m_0$, and
$\| \widehat w_m\| \leqslant C_1$ for all
$m$. The constant
$C_1>0$ also depends on the magnetic potential
$A$ (and does not depend on the
$m_0$).
Keywords:
Dirac operator, absolute continuity of the spectrum, periodic potential.
UDC:
517.958,
517.984.5
MSC: 35P05 Received: 01.09.2016