Abstract:
The interaction between carbon adatoms as a function of the coverage of the Fe(001) and Fe(111) surfaces by carbon has been theoretically investigated using first-principles calculations in terms of the density functional theory. It has been established for the first time that the sequential filling of the upper surface layer by carbon atoms leads to the embedding of a part of atoms in the subsurface iron layer due to the their collective interaction, which provides the possibility of forming the interstitial solid solution. It has been demonstrated that the high coverage of the (001) surface by carbon leads to a considerable decrease in the energy barrier to the diffusion of carbon atoms into the subsurface layer as compared to the diffusion barrier for single atoms.