Abstract:
The precession dynamics of the magnetization of a film with in-plane uniaxial anisotropy in the case of its biasing along the hard magnetization axis has been analyzed by numerically solving the Landau-Lifshitz equations. It has been revealed that the ferromagnetic resonance spectrum near the magnetic anisotropy field exhibits an additional peak, which is associated with the angular bistability due to the presence of two symmetric angular equilibrium positions. The trajectories of precession motion during biasing along the hard magnetization axis differ substantially from the trajectories corresponding to the biasing along the easy axis.