Abstract:
This paper reports on a comparative study of phase transitions in nanocomposites made up of KNO$_3$ embedded in 10-$\mu$m-thick MCM-41 films with unidirectional pores 4.0 nm in size on an aluminum substrate and of nanocomposites prepared in the form of potassium-nitrate-filled pressed MCM-41 powders with 3.7-nm pores. The temperature dependences of linear permittivity and the amplitude of third harmonic generation have been measured under heating and cooling. The structural transition from phase II to phase I shifts under heating relative to that occurring in bulk KNO$_3$ toward lower temperatures for potassium nitrate in the film and toward higher temperatures for the pressed MCM-41-based nanocomposite. A significant difference has been observed also within the region of existence of ferroelectric phase III. The data obtained suggest that the shifts of phase transition temperatures observed in the conditions of nanoconfinement are influenced markedly not only by pore size and geometry but also by other factors.