Abstract:
The main features of thermoluminescence (TL) of nanostructured ceramics based on anion-defective aluminum oxide have been investigated. The kinetic parameters of the TL dosimetric peak at 475 K have been determined. The possibility of using nanostructured ceramics for beta-radiation dosimetry of high doses (up to 1 kGy) with thermoluminescence of deep traps has been justified. It has been found that the light sum of the dosimetric peak decreases with an increase in the heating rate due to the temperature quenching of the luminescence. The obtained results have confirmed that the mechanism of TL quenching in anion-defective aluminum oxide is associated with the temperature dependence of the probability of the capture in deep traps, which can be caused by thermal ionization of excited states of $F$-centers.