Abstract:
It has been shown by the molecular dynamics method that the introduction of interstitials in the dumbbell configuration into the copper crystal leads to a significantly stronger shear modulus reduction than the vacancy introduction. Specific low-frequency modes appear in the spectrum of vibrational states of “defect” atoms. The vacancy formation enthalpy weakly depends on their concentration, and the interstitial dumbbell formation enthalpy at high concentrations can decrease by a factor of 8. In this case, the radial distribution function takes the form characteristic of noncrystalline materials. The results obtained confirm the interstitial theory of the condensed state.