RUS  ENG
Full version
JOURNALS // Fizika Tverdogo Tela // Archive

Fizika Tverdogo Tela, 2024 Volume 66, Issue 9, Pages 1577–1584 (Mi ftt10433)

Surface physics, thin films

Electronic state of iron atoms doped in germanium

T. T. Magkoeva, Y. Menb, R. Behjatmanesh-Ardakanic, M. Elahifardc, O. G. Ashkhotovd

a FSBEI of Higher Education "North-Ossetian State University after K.L. Khetagurov", Vladikavkaz, Russia
b School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P.R. China
c Department of Chemical Engineering, Faculty of Engineering, Ardakan University, P.O. Box 184, Ardakan, I.R. Iran
d BOFSBEI of Higher Education "Kabardino-Balkarskiy State University after Kh.M. Berbekov", Nalchik, Russia

Abstract: To study the electronic state of iron atoms doped in germanium, a double film system Fe–Ge was formed under ultrahigh vacuum conditions, obtained by annealing a Fe layer deposited on a Ge film formed on the surface of a Mo(110) crystal. The results obtained using a combination of low-energy ion scattering spectroscopy (LEIS), Auger electron spectroscopy (AES), low-energy electron diffraction (LEED), and Anderson work function measurements indicate that the Fe-Ge double film formed in this way is characterized by a uniform distribution of Fe and Ge atoms over the film bulk. It is shown that a change in the relative content of Fe atoms leads to a significant change in their electronic state. The first measurements of the absolute charge of Fe atoms acquired by them when doped in germanium indicate that as the Fe content increases, the charge value systematically decreases from 0.34e for a single atom to 0.07e for the same Fe and Ge ratio. This is accompanied by a change in the length of the Fe$^+$ – Ge$^-$ interatomic bond within the range from 0.141 nm to 0.118 nm. The latter, being evidence of structural transformations of Ge, characterized by a change in the lengths and angles of the lattice bonds, can be used to identify structural units of doped germanium at different concentrations of the doping component.

Keywords: thin films, doping, germanium, iron, electronic state, surface analysis methods.

Received: 28.04.2024
Revised: 07.07.2024
Accepted: 08.07.2024

DOI: 10.61011/PSS.2024.09.59223.108



© Steklov Math. Inst. of RAS, 2026