RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2006 Volume 12, Issue 4, Pages 79–97 (Mi fpm960)

This article is cited in 6 papers

On stabilization of solutions of the Cauchy problem for a parabolic equation with lower-order coefficients

V. N. Denisov


Abstract: In the paper, we study the sufficient conditions for the lower-order coefficient of the parabolic equation
$$ \Delta u+c(x,t)u-u_t=0\ \ \text{for}\ \ x\in\mathbb R^N,\ \ t>0, $$
under which its solution satisfying the initial condition
$$ u|_{t=0}=u_0(x)\ \ \text{for}\ \ x\in \mathbb R^N, $$
stabilizes to zero, i.e., there exists the limit
$$ \lim_{t\to\infty}{u(x,t)}=0, $$
uniform in $x$ from every compact set $K$ in $\mathbb R^N$ for any function $u_0(x)$ belonging to a certain uniqueness class of the problem considered and growing not rapidly than $e^{a|x|^b}$ with $a>0$ and $b>0$ at infinity.

UDC: 517.955


 English version:
Journal of Mathematical Sciences (New York), 2008, 150:6, 2344–2357

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026