RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2006 Volume 12, Issue 2, Pages 101–110 (Mi fpm937)

This article is cited in 8 papers

Combinatorial generators of the multilinear polynomial identities

V. N. Latyshev

M. V. Lomonosov Moscow State University

Abstract: A Gröbner–Shirshov basis (a combinatorial system of generators) is defined in the set of multilinear elements of a T-ideal of the free associative algebra with a countable set of indeterminates. A combinatorial version of the well-known Specht problem about the finite basedness of polynomial identities of an arbitrary associative algebra is formulated. A “combinatorial Spechtness” property of the multilinear product of commutators of degree 2 and the same property for the three-linear commutator are established.

UDC: 512.554


 English version:
Journal of Mathematical Sciences (New York), 2008, 149:2, 1107–1112

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026