RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2005 Volume 11, Issue 4, Pages 105–117 (Mi fpm849)

This article is cited in 1 paper

Geometry of Euclidean tetrahedra and knot invariants

I. G. Korepanov

South Ural State University

Abstract: We construct knot invariants on the basis of ascribing Euclidean geometric values to a triangulation of the sphere $S^3$, where the knot lies. Edges of the triangulation along which the knot goes are distinguished by a nonzero deficit angle, in the terminology of the Regge calculus.

UDC: 515.162.8


 English version:
Journal of Mathematical Sciences (New York), 2007, 144:5, 4437–4445

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026