RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2005 Volume 11, Issue 2, Pages 219–226 (Mi fpm819)

On some extensions of $p$-restricted completely splittable $\mathrm{GL}(n)$-modules

V. V. Shchigolev

Ulyanovsk State University

Abstract: In this paper, we calculate the space $\mathrm{Ext}_{\mathrm{GL}(n)}(L_n(\lambda),L_n(\mu))$, where $\mathrm{GL}(n)$ is the general linear group of degree $n$ over an algebraically closed field of positive characteristic, $L_n(\lambda)$ and $L_n(\mu)$ are rational irreducible $\mathrm{GL}(n)$-modules with highest weights $\lambda$ and $\mu$, respectively, the restriction of $L_n(\lambda)$ to any Levi subgroup of $\mathrm{GL}(n)$ is semisimple, $\lambda$ is a $p$-restricted weight, and $\mu$ does not strictly dominate $\lambda$.

UDC: 512.743.7+512.547.23


 English version:
Journal of Mathematical Sciences (New York), 2007, 142:2, 2015–2019

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026