RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2005 Volume 11, Issue 2, Pages 115–125 (Mi fpm815)

This article is cited in 1 paper

On relatively aspherical presentations and their central extensions

O. V. Kulikova

M. V. Lomonosov Moscow State University

Abstract: Under the condition of asphericity of a quotient group $G/\bar N_R$, mutual commutants of the form $[\bar N_R, G]$ in hyperbolic groups $G$ are investigated together with the structure of central subgroups $\bar N_R/[\bar N_R, G]$ in central extensions $G/[\bar N_R, G]$ of $G/\bar N_R$. In particular, quotients of the form $G/[g^m,G]$ are considered, where $g$ is an element of infinite order from a hyperbolic group $G$ and $m$ is sufficiently large (depending on $g$).

UDC: 512.543


 English version:
Journal of Mathematical Sciences (New York), 2007, 142:2, 1942–1948

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026