RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2005 Volume 11, Issue 1, Pages 159–180 (Mi fpm801)

This article is cited in 6 papers

Associative homotopy Lie algebras and Wronskians

A. V. Kiselev

M. V. Lomonosov Moscow State University

Abstract: We analyze representations of Schlessinger–Stasheff associative homotopy Lie algebras by higher-order differential operators. $W$-transformations of chiral embeddings of a complex curve related with the Toda equations into Kähler manifolds are shown to be endowed with the homotopy Lie-algebra structures. Extensions of the Wronskian determinants preserving Schlessinger–Stasheff algebras are constructed for the case of $n\geq1$ independent variables.

UDC: 512.81


 English version:
Journal of Mathematical Sciences (New York), 2007, 141:1, 1016–1030

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026