RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2002 Volume 8, Issue 2, Pages 357–364 (Mi fpm650)

This article is cited in 3 papers

On the type number of nearly-cosymplectic hypersurfaces in nearly-Kählerian manifolds

M. B. Banaru

Moscow State Pedagogical University

Abstract: Nearly-cosymplectic hypersurfaces in nearly-Kählerian manifolds are considered. The following results are obtained.
Theorem 1. The type number of a nearly-cosymplectic hypersurface in a nearly-Kählerian manifold is at most one.
Theorem 2. Let $\sigma$ be the second fundamental form of the immersion of a nearly-cosymplectic hypersurface $(N,\{\Phi,\xi,\eta,g\})$ in a nearly-Kählerian manifold $M^{2n}$. Then $N$ is a minimal submanifold of $M^{2n}$ if and only if $\sigma(\xi,\xi)=0$.
Theorem 3. Let $N$ be a nearly-cosymplectic hypersurface in a nearly-Kählerian manifold $M^{2n}$, and let $T$ be its type number. Then the following statements are equivalent: 1) $N$ is a minimal submanifold of $M^{2n}$; 2) $N$ is a totally geodesic submanifold of $M^{2n}$; 3) $T\equiv0$.

UDC: 513.82

Received: 01.03.2002



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026