RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2000 Volume 6, Issue 4, Pages 1193–1203 (Mi fpm534)

This article is cited in 1 paper

On decidability of the equational theories of ring varieties of finite characteristic

V. Yu. Popov

Urals State Pedagogical University

Abstract: It is proved that for every natural number $n>1$ there exists a finitely based variety $\mathfrak X_n$ of (not necessarily associative) rings such that $\mathfrak X_n\models nx=0$, $\mathfrak X_n\not\models mx=0$ for every natural number $m<n$, and the equational theory $\mathfrak X_n$ is undecidable.

UDC: 512.519.4

Received: 01.01.1998



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026