RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2000 Volume 6, Issue 4, Pages 1257–1261 (Mi fpm531)

Short communications

A construction of principal ideal rings

Yu. V. Kuz'min

Moscow State University of Railway Communications

Abstract: Let $K$ be an algebraic number field, and let $R$ be the ring that consists of “polynomials” $a_1x^{\lambda_1}+\ldots+a_s x^{\lambda_s}$ ($a_i\in K$, $\lambda_i\in\mathbb{Q}$, $\lambda_i\geq0$). Consider the set of elements $S$ closed under multiplication and generated by the elements $x^{1/m}$, $1+x^{1/m}+\ldots+x^{k/m}$ ($m$ and $k$ vary). We prove that the ring $RS^{-1}$ is a principal ideal ring.

UDC: 512.552.3

Received: 01.12.1996



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026