Abstract:
It is shown that for the parametric class of piecewise linear maps
$$
f(x)=\begin{cases}
\max(k_1x+1,w), &x<0,
\\
\min(k_2x-1,w), &x\geq0
\end{cases}
$$
($k_1$ and $k_2$ are greater than one) the range of the parameter $w$, where iterations
$x_{n+1}=f(x_n)$ are nonperiodic, has zero Lebesgue measure.