RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2000 Volume 6, Issue 1, Pages 207–223 (Mi fpm467)

This article is cited in 1 paper

About some approach to the theory of Nikolski\v{i}–Besov spaces on homogeneous manifolds

S. S. Platonov

Petrozavodsk State University

Abstract: Let $M$ be a compact symmetric space of rank 1. We have defined the Nikolski\v{i}–Besov function classes $B_{p,\theta}^r(M)$, $r>0$, $1\leq\theta\leq\infty$, $1\leq p\leq\infty$, and we have obtained a constructive description of these classes in terms of the best approximations of functions $f\in L_p(M)$ by the spherical polynomials on $M$.

UDC: 517.518

Received: 01.02.1996



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026