RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2000 Volume 6, Issue 1, Pages 275–280 (Mi fpm459)

On ranges of polynomials in the ring $M_2(\mathbb Z/8\mathbb Z)$

V. V. Kulyamin

M. V. Lomonosov Moscow State University

Abstract: The main result of this article is the following: a subset $A$ of $2\times2$ matrices over the ring $\mathbb Z/8\mathbb Z$ is the range of a polynomial in noncommuting indeterminates with coefficients in $\mathbb Z/8\mathbb Z$ and without constant term if and only if $A$ contains 0 and is selfsimilar, that is $\alpha A\alpha^{-1}\subseteq A$ for each invertible $2\times2$ matrix $\alpha$.

UDC: 512.552.1

Received: 01.10.1998



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026