Abstract:
In the paper we prove that any formally integrable Mizohata system of codimension one
$$\left \{
\begin{array}{@{}l@{}}
\partial_1u=\epsilon_1ix^1\partial_nu+f_1,
\\
\partial_2u=\epsilon_2ix^2\partial_nu+f_2,
\\
\dots \dots \dots
\\
\partial_{n-1}u=\epsilon_{n-1}ix^{n-1}\partial_nu+f_{n-1}
\end{array}
\right.
$$
can be reduced by a local change of the variables to a system of the form
$$\left \{
\begin{array}{@{}l@{}}
\partial_1v^1+\partial_2v^2=\psi _1,
\\
\partial_1v^2-\partial_2v^1=\psi _2
\end{array}
\right.
$$
and, consequently, to Poisson's equation in the plane.