RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 1997 Volume 3, Issue 2, Pages 625–630 (Mi fpm224)

Short communications

Recognition of identities in quotient algebras of universal enveloping algebras

E. V. Lukoyanova

Ulyanovsk State University

Abstract: For special type of (associative) polynomials $f$ and simple algebras $L$ the problem of recognition of identity $f$ in quotient algebra $U_L/J$ of universal enveloping algebra $U_L$ by arbitrary ideal $J$, where $J$ is given by its generators, is solved. The central point of the solution is the
Theorem. Let $l_1,\ldots,l_p$ be Lie (associative) polynomials with non-intersecting sets of variables which are not identities in $L$, $f=\prod\limits_{i=1}^{p}l_{i}(x_{i_{1}},\ldots,x_{i_{n_{i}}})$, then the verbal ideal $T_f(U_L)$ generated by polynomial $f$ in $U_L$ is equal to $U_L{}^p$.
In particular, $U_L/T_f(U_L)$ is a nilpotent algebra of degree $p$.

UDC: 512.55

Received: 01.12.1995



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026