RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 1997 Volume 3, Issue 2, Pages 469–485 (Mi fpm222)

On images of polynomials in finite matrix rings

V. V. Kulyamin

M. V. Lomonosov Moscow State University

Abstract: We study the images of polynomials in non-commuting indeterminates in the ring of $2\times2$ matrices over a Galois ring. The main result: a set of $2\times2$ matrices over a Galois ring whose radical has nilpotency index 2, is an image of a polynomial with zero constant term if and only if it contains 0 and is self-conjugate.

UDC: 512.552.1

Received: 01.12.1995



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026