RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 1997 Volume 3, Issue 2, Pages 351–357 (Mi fpm219)

This article is cited in 1 paper

Application of the $A^{\land}$-integration for Fourier transforms

Anter Ali Alsayad

M. V. Lomonosov Moscow State University

Abstract: The following theorem is proved
Theorem. Let the function $f(x)$ be a boundary variation on $\mathbb R$ and $f(x)\to0$ ($x\to\pm\infty$). Then its Fourier transform
$$ \widehat f(\lambda)=(L^{\land})\int\limits_{-\infty}^{+\infty}f(t)e^{-2\pi i\lambda t}dt $$
exists in case of $\lambda\ne0$ and $f(x)$ recovers by its Fourier transforms by mean of the $A^{\land}$-integral. Further for all $x\in\tilde{A}$, where $f(x)=\dfrac12(f(x+0)+f(x-0))$ (for all $x$, except countable subset) the following holds
$$ f(x)=(A^{\land})\int\limits_{-\infty}^{+\infty}\widehat f(\lambda)e^{2\pi i\lambda x}d\lambda. $$


UDC: 517.51

Received: 01.01.1996



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026