RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2025 Volume 25, Issue 3, Pages 175–188 (Mi fpm1989)

Approximative compactness in classical sequence spaces

Hu Fang

Lomonosov Moscow State University

Abstract: A point $x$ is a point of approximative compactness for a set $M$ if any minimizing sequence from $M$ for $x$ contains a subsequence converging to some point from $M$. We obtain several characterizations for points of approximative compactness for special subsets (a closed ball, the complement of an open ball) in classical sequence spaces $c_0(\Gamma)$, $c(\Gamma)$, $\ell^p(\Gamma)$, $1\le p\le \infty$.

UDC: 517.982.256



© Steklov Math. Inst. of RAS, 2026