RUS  ENG
Full version
JOURNALS // Fundamentalnaya i Prikladnaya Matematika // Archive

Fundam. Prikl. Mat., 2024 Volume 25, Issue 1, Pages 3–30 (Mi fpm1956)

Belyi function decompositions for the icosahedron of genus $4$

N. Ya. Amburgab, M. A. Kovalevab

a National Research Centre "Kurchatov Institute", Moscow
b National Research University Higher School of Economics, Moscow

Abstract: The icosahedron $I_4$ of genus $4$ is a dessin d'enfant embedded in Bring's curve $\mathcal{B}$. The dessin $I_4$ is related in some sense to a regular icosahedron $I_0$ embedded in the complex Riemann sphere. In particular, decompositions of Belyi functions $\beta_{I_0}\colon \mathbb{CP}^1 \rightarrow \mathbb{CP}^1$ and $\beta_{I_4}\colon \mathcal{B} \rightarrow \mathbb{CP}^1$ for $I_0$ and $I_4$ have the same lattice. The diagram of $\beta_{I_0}$ decompositions is already known. In the present paper we find $\beta_{I_4}$ decompositions. Note that $\beta_{I_0}$ decomposes into rational functions on $\mathbb{C}P^1$, while in case of $\beta_{I_4}$ we deal with maps between different algebraic curves.

UDC: 512.627.44



© Steklov Math. Inst. of RAS, 2026